3D Fourier based discrete Radon transform

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Fourier based discrete Radon transform

The Radon transform is a fundamental tool in many areas. For example, in reconstruction of an image from its projections (CT scanning). Recently A. Averbuch et al. [SIAM J. Sci. Comput., submitted for publication] developed a coherent discrete definition of the 2D discrete Radon transform for 2D discrete images. The definition in [SIAM J. Sci. Comput., submitted for publication] is shown to be ...

متن کامل

Discrete radon transform

This paper describes the discrete Radon transform (DRT) and the exact inversion algorithm for it. Similar to the discrete Fourier transform (DFT), the DRT is defined for periodic vector-sequences and studied as a transform in its own right. Casting the forward transform as a matrix-vector multiplication, the key observation is that the matrix-although very large-has a block-circulant structure....

متن کامل

Dft : Discrete Fourier Transform

A. Table of contents by sections: 1. Abstract (you’re reading this now) 2. Summary of the DFT (How do I do the homework?) 3. Review of continuous-time Fourier series 4. Bandlimited signals and finite Fourier series 5. Sampling theorem for periodic signals 6. Review of quirks of discrete-time frequency 7. Orthogonality and its significance 8. Discrete Fourier Transform (DFT) 9. Use of DFT to com...

متن کامل

The Discrete Fourier Transform∗

1 Motivation We want to numerically approximate coefficients in a Fourier series. The first step is to see how the trapezoidal rule applies when numerically computing the integral (2π) −1 2π 0 F (t)dt, where F (t) is a continuous, 2π-periodic function. Applying the trapezoidal rule with the stepsize taken to be h = 2π/n for some integer n ≥ 1 results in (2π) −1 2π 0 F (t)dt ≈ 1 n n−1 j=0 Y j , ...

متن کامل

The Discrete Fourier Transform

Disclaimer: These notes are intended to be an accessible introduction to the subject, with no pretense at completeness. In general, you can find more thorough discussions in Oppenheim's book. Please let me know if you find any typos. In this lecture, we discuss the Discrete Fourier Transform (DFT), which is a fourier representation for finite length signals. The main practical importance of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2003

ISSN: 1063-5203

DOI: 10.1016/s1063-5203(03)00030-7